
MATHEMATICS OF COMPUTATION
VOLUME 48, NUMBER 177
JANUARY 1987, PAGES 17-28

Solving Bivariate Quadratic Congruences
in Random Polynomial Time

By Leonard M. Adleman*, Dennis R. Estes, and Kevin S. McCurley

Dedicated to Daniel Shanks on the occasion of his seventieth birthday

Abstract. It has been known for some time that solving x2 = a (mod n) is as difficult as
factoring n, at least in the sense that the two problems are random polynomial time
equivalent. By contrast, solving a bivariate quadratic congruence x - ky2 m (mod n) can
usually be done in random polynomial time even if the factorization of n is unknown. This
was first proved by Pollard and Schnorr in 1985 under the assumption of the Piltz conjecture
for Dirichlet L-functions. We now prove the result without assuming any unproved hypothe-
s1s.

1. Introduction. Let n be an odd positive integer, and let

(1) f(x, y) = Ax2 + Bxy + Cy2 + Dx + Ey + F

be a quadratic polynomial with integer coefficients. In this paper we consider the
computational problem of constructing a solution to the congruence f(x, y) 0
(modn), when a solution exists. The classical approach to this problem is to first
find the complete prime factorization of n, solve the congruence modulo the primes
dividing n, and then use Hensel's lemma and the Chinese Remainder Theorem to
construct a solution modulo n. The major drawback to this approach is that the
problem of factoring n appears to be computationally infeasible if n is large. The
question then arises whether there exists a method for solving f(x, y) - 0 (mod n)
that does not rely on the ability to factor n.

In some special cases it is known that solving f(x, y) - 0 (mod n) is random
polynomial time equivalent to factoring n. Consider for example the problem of
solving x2 = m (mod n). Rabin [9] has observed that any algorithm that will
compute solutions to this congruence will provide a random polynomial time
algorithm for factoring n. The algorithm can be easily described as follows:

1. Pick a random number y with 1 < y < n - 1, and compute m = y2 (mod n).
2. Compute a solution x to x 2 = m (mod n).
3. Compute d = gcd(x + y, n). If 1 < d < n, then you have a proper factorization

of n.

Received February 25, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 11Y16; Secondary llYO5.
*Research sponsored by NSF Grant DCR 8022533.

?1987 American Mathematical Society

0025-5718/87 $1.00 + $.25 per page

17

18 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

One can easily prove that if n is not a prime power, then step 3 will give a proper
factor of n with probability at least 1/2. In fact, two of the fastest known factoring
algorithms, namely the quadratic sieve algorithm and the continued fraction algo-
rithm, are based on the ability to construct solutions to the congruence X2 - Y2 0
(mod n) with x # ?y (mod n) [7].

Even though solving quadratic congruences in one variable is equivalent to
factoring the modulus, this is not usually the case for quadratic congruences in two
variables. It was recently proved by Pollard and Schnorr [8] that if gcd(km, n) = 1,
then there exists an algorithm to solve
(2) x2 -ky2 m (modn)

that runs in random polynomial time if a generalized Riemann hypothesis is true.
The main result of this paper is to show that a modified version of their algorithm
runs in random polynomial time without the assumption of any unproved hypothe-
sis. In addition, we will show how to reduce a more general problem of solving
f(x, y) 0 (mod n) with f(x, y) given by (1) to the problem of solving (2). It
should be noted that the special cases in which solving f(x, y) 0 (mod n) is
known to be equivalent to factoring n are not covered by our theorem, and we
therefore do not shed any light on the computational complexity of factoring. Our
modified version of the algorithm for solving (2) is not at all practical to implement,
and has a slower running time than the versions discussed in [8] and [11], but it has
the advantage that one can fully prove the running time estimates without assuming
any unproved hypothesis. While the version of the algorithm that is presented here is
not practical, it is probably the case that other variations of the algorithm will work
quite well in practice.

Our main result is the following:

THEOREM 1. Let n be an odd positive integer, and let f(x, y) be given by (1), and
define A(f), the determinant off, as follows:

2A B D
(3) A(f)=det B 2C EJ.

LD E 2F
If gcd(lA(f), n) = 1, then there exists an algorithm requiring O(log(E-7 log n)log4 n)
arithmetic operations on integers of size O(logn) bits that will give a solution to
f (x, y) 0 (mod n) with probabilityI - e.

In this paper the term "arithmetic operation" refers to an addition, subtraction,
multiplication, or division of ordinary integers. Note that a probabilistic algorithm
for solving f(x, y) 0 (mod n) can be classified as a Las Vegas algorithm, since one
can easily verify the correctness of a solution in polynomial time.

It is possible to slightly weaken the condition that gcd(zA(f), n) = 1. We can, for
example, still prove the result if we assume that the complete prime factorization of
gcd(iX(f), n) is known (if a solution exists). Of course, if 1 < gcd(A (f),n) < n, then
we can compute a proper factor of n using the Euclidean algorithm, and one might
at first think that one can always use the Chinese Remainder Theorem and/or
Hensel's lemma to construct a solution to the original congruence. However, this is
not the case with the example

x- ty2 k (modt2),

SOLVING BIVARIATE QUADRATIC CONGRUENCES 19

where t is odd and composite, and where l\(f) = 8kt. In the algorithm that we
discuss, we would immediately detect the factorization t2 = t- t and attempt to
solve the congruence modulo t and lift the solution modulo t to a solution modulo t 2
using Hensel's lemma. Modulo t, however, the congruence reduces to solving x2 k
(mod t), which has been shown to be essentially as hard as factoring t. The condition
on A (f) is intended to rule out cases such as this.

2. Reduction to Solving x2 - ky2 m (mod n). The following result shows that in
order to solve f (x, y) 0 (mod n), it suffices to solve (2).

THEOREM 2. Let n be an odd integer, and assume that gcd(L\(f), n) = 1, where
A(f) is defined in (3). Then there exists a deterministic algorithm requiring O(log2 n)
multiplications modulo n that will, upon input A, B, C, D, E, F, and n, output one of
the following:

(i) relatively prime integers n1 and n2 with 1 < ni < n and n =n n 2;

(ii) an invertible linear change of variables transforming the congruence f (x, y) 0
(mod n) into a congruence of the form x2 - ky2 m (mod n) with gcd(km, n) = 1;

(iii) a solution x, y to the congruence f (x, y) 0 (mod n).

Before we prove Theorem 2, note that if we know a factorization n = njn2 with
1 < ni < n and gcd(n1, n2) = 1, then it suffices to solve the two congruences
f(x, y) 0 (mod n1), since we can then combine the results using the Chinese
Remainder Theorem to get a solution modulo n. The application of the Chinese
Remainder Theorem requires at most O(log n) multiplications modulo n. Since we
can also invert a two-variable linear transformation modulo n in at most 0(1)
operations modulo n, then to prove Theorem 1 it will suffice to show that we can
solve (2) when gcd(km, n) = 1.

To begin the proof of Theorem 2, suppose that we are able to produce a
factorization n = n1n2 with 1 < ni < n. If gcd(nj, n2) = 1, then we output nj, n2
and stop. If g = (n1, n2) > 1, then we will argue that either we can find a relatively
prime factorization n = hk with 1 < h, k < n, or else both n1 and n2 are divisible
by no, where

m m

n= pi, if n = H pie is the prime factorization of n.
i=1 i=1

The algorithm to produce such a factorization, if g > 1, is as follows:
1. Set g = gcd(n1, n2), k = g2, and h = n/g2.

2. If h = 1, then stop, since no n1 and no n2.
3. Compute m = gcd(g, h). If m = 1, then n = hk gives a factorization with

1 < h, k < n and gcd(h, k) = 1. If m > 1, then replace h by h/m, k by km,
and return to step 2.

This algorithm will terminate after at most O(log n) iterations, since the h's are
decreasing. Therefore, for the remainder of the proof we may assume that every
integer that arises is either relatively prime to n or else is divisible by n 0.

Note that each prime dividing n fails to divide one of A, B, or D, since
gcd(A(f), n) = 1. By the remark in the previous paragraph, we may assume that one
of these values is relatively prime to n, and those that are not are divisible by n,. If

20 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

A is relatively prime to n, then we compute A1 mod n, multiply both sides by 4A1,
and complete squares to transform f(x, y) 0 (mod n) into

(2x + A-1By + A 1D)2 + (4A-1C - A-2B2)y2 +(4A-1E - 2A-2BD)y

+4A-1F - A-2D20 (mod n).

We now make the change of variables

u = 2x + A-1By + A-1D, v =y,

so that our new congruence has the form

(4) U2+ Gv2 +Hv + I--0 (modn).

Note that the matrix of our new polynomial is related to the matrix of the old
polynomial by

2A B D
4A-1 B 2C E

_D E 2F-

2 0 0 2 0 0 2 A 1B A-1D
- A-B 1 0 0 2G H 0 1 0 (modn),

A-1D 0 11-0 H 2I-0 0 1

so that the determinant of the new polynomial is also relatively prime to n.
In a similar manner, we can complete the square if gcd(C, n) = 1. If both A and

C are not relatively prime to n, then we can assume that no divides both A and C.
In this case, if gcd(B, n) = 1, then we make the change of variables x = u + v,
y = v. This gives us a new polynomial with the same determinant as the original
polynomial, but where A is replaced by A + B + C. Note that gcd(A + B + C, n)
= 1, so that we can again complete squares and reduce to solving a congruence in
the form (4). The only case that still has not been reduced to solving (4) is when A,
B, and C all have a factor in common with n. In this case we may assume that
gcd(D, n) = 1 and n0 divides A, B, and C. We then compute d = gcd(A, B, C),
take y = 0, and find xi with Axi + Dxj + F 0 (mod d'), where i is large enough
so that d' is divisible by n. When i = 1, the congruence reduces to solving
Dx1 + F 0 (mod d), which is solvable since gcd(D, d) = 1. We now use what is
essentially Hensel's lemma to "lift" a solution (x1,O) modulo d' to a solution
(x 01,O) modulo d'+1. We let x1+1 = x1 + d'z, so that solving f(x, y) 0
(mod d'+ 1) amounts to solving (2Axx + D)z -R (mod d), where Axl + Dx1 + F
= d1R. This last congruence is solvable since no 0 A, n is odd, and gcd(D, n) = 1.
Moreover, the lifting process involves no more than O(i - log d) = O(log2n) multi-
plications.

We now turn to the problem of solving (4). If gcd(G, n) = 1, then we can
complete the square in the variable v and reduce to solving a congruence of the form
(2), with gcd(km, n) = 1. If on the other hand we have gcd(G, n) > 1, then we may
assume that no divides G. In this case, since gcd(l(f), n) = 1, it follows that
gcd(H, n) = 1. In order to solve (4), it suffices to find vi satisfying

(5) Gv Hv + I - (modG'),

SOLVING BIVARIATE QUADRATIC CONGRUENCES 21

where i is large enough so that G' is divisible by n. The procedure for solving this is
exactly the same as was described in the previous paragraph, and this completes the
proof of Theorem 2.

3. The Algorithm for Solving (2). We will prove that there exists an algorithm that,
upon input k, m, and n with n odd and gcd(km, n) = 1, will output a solution to
the congruence (2) with probability 1 - E in 0(log('-1 logIk)log3 n logIk) steps. As
was mentioned in Section 1, the algorithm that we analyze in this paper for solving
(2) is a modified version of an algorithm first suggested by Pollard, and analyzed by
Pollard and Schnorr [8] and Shallit [11]. A rough outline of the original algorithm is
as follows.

1. Find a prime p satisfying p m (mod n) and (k/p) = 1.
2. Find a solution x0 to the congruence X2k (mod p).
3. Use x0 to find u, v, and k1 satisfying u2 -kv2 = k1p, with k1 = O(lk 11/2).

4. Since u2 - kv2 n mk1 (mod n), use the composition of binary quadratic forms
to reduce to solving z2 - kw2 k1 (mod n), which is usually equivalent to
solving x2 - k1y2 k (mod n). If 1ki > 1, then repeat steps 1-4 and reduce
to solving a congruence with k1 replaced by a still smaller value. If 1ki = 1,
then use a specialized algorithm to solve X2 ? y2 k (mod n).

In practice, each of these steps can be carried out using known algorithms, see,
e.g., Shanks [12] and Knuth [4]. The only difficulty in analyzing Pollard's algorithm
lies in step 1, since we have available only very weak results concerning the
distribution of primes in arithmetic progressions, unless we assume the Piltz conjec-
ture for Dirichlet L-functions (the generalized Riemann hypothesis). Without some
unproved assumption concerning the distribution of zeros of Dirichlet L-functions,
we are unable to prove that there exists an algorithm for constructing a prime in an
arithmetic progression a modulo q in random polynomial time. Roughly speaking,
our modification of Pollard's algorithm is based on the fact that we are able to prove
that for at least half of the values of a modulo q we can find a prime in the
arithmetic progression a modulo q in random polynomial time. In order to exploit
this fact, we will sometimes reduce the congruence (2) to the problem of solving both
x - ky2 Lm (mod n) and x2 - ky2 L (mod n), where L is a randomly chosen
residue modulo n. We then carry out a reduction procedure on both of these
problems. For technical reasons, the primes that we will produce in step 1 for
carrying out the reduction step will satisfy the condition p # 1 (mod 8) in place of
(k/p) = 1. An alternative proof might work with the condition (k/p) = 1 and an
explicit formula version of the Chebotarev density theorem.

It is well known that the distribution of primes in arithmetic progressions modulo
q depends on the location of zeros of Dirichlet L-functions formed with characters
modulo q (see, e.g., [3, Chapters 19-22]). Let X be a character modulo q, and let
L(s, X) be the associated Dirichlet L-function. We will refer to X as an exceptional
character if there exists a real zero /3 of L(s, X) satisfying /3 > 1 - 0.1/log q, and we
will further call /3 an exceptional zero and q an exceptional modulus. It is known
(see [5]) that for each integer q there can be at most one exceptional zero, and that if
it exists, then the character X is a real nonprincipal character. It is widely believed
that no such zeros exist.

22 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

If a and q are positive integers, then we define

(x; q, a)= E logp, T(x; q, a)= E 1.
p x p x

p =a (modq) p=a (modq)

The proof of Theorem 1 uses some lemmas concerning T(x; q, a) and #(x; q, a).
The first of these is sometimes referred to as the Brun-Titchmarsh Theorem,
although the explicit form that we give here is actually due to Montgomery and
Vaughn [6].

LEMMA 1. If x > n > 0, then ?T(x; n, a) < 2x/(9p(n)log(x/n)).

The following lemma is due to Bombieri and Gallagher, and a proof appears in
[1].

LEMMA 2. For any E > 0, there exists an effectively calculable absolute constant
D = D(e) such that if x > nD and gcd(a, n) = 1, then

(i) #(x; n, a) > (1 - E)x/cp(n) - X(a)xI/(Il(pn)), if n has an exceptional zero
/3, or

(ii) O(x; n, a) > (1 - E)x/cp(n), if n is not exceptional.

LEMMA 3. Let n be odd, gcd(a, n) = 1, and assume that either n is not exceptional,
or else if an exceptional character X modulo n exists, then X(a) = -1. Then

E 1 > x
P < X 39p(n)logx'

p=a (modn)
p # 1 (mod 8)

provided x > n D, where D is an effectively calculable absolute constant.

Proof. Let b satisfy b 1 (mod 8), b a (mod n). Then by Lemmas 1 and 2 we
have

5? 1 = lr(x; n, a) - ?T(x; 8n, b)
pax

p-a (modn)
p#1 (mod 8)

X(1 - E) 2x x

9p(n)logx 9p(8n)log(x/8n) 3p(n)logx'

provided E is small and D is large. C1
In the reduction step from x2 - ky2 m (mod n) to x2 - ky2 k (mod n), we

will make use of the following two-part lemma.

LEMMA 4. Let n be odd, gcd(m, n) = 1, D be as in Lemma 3, and E> 0.
(a) There exists a Monte Carlo algorithm requiring O(log(l/E)log3 n) arithmetic

operations on integers having O(logn) bits that will construct either (i), (ii), or (iii)
below with probability at least 1 -

(i) aprimep1 satisfying p1 1 (mod 8), Pi m (mod n), and p1 < nD;

(ii) an integer L with gcd(L, n) = 1, and primes P2, p3 satisfying

P2 L(modn), p2 1(mod8), p2<nD,

p3 Lm (modn), p3 # 1 (mod8), p3< nD;

SOLVING BIVARIATE QUADRATIC CONGRUENCES 23

(iii) an integer d satisfying 1 < d < n and d I n.
(b) There exists an algorithm having the same running time that will construct either

(i), (ii), or (iii) where the conditions pi # 1 (mod 8) are replaced by the conditions

Pi 1 (mod 8).

Proof. We use the primality test of Solovay and Strassen [13]. In order to test an
odd integer p > 3 for primality, we choose a random integer r with 1 < r < p and
check if

(6) r(p 1)/2 (r/p) (mod p),

where the symbol on the right side of the congruence is the Jacobi symbol. If p is
prime, then (6) holds for all integers r with 1 < r < p. If p is not prime, then (6)
holds for at most one half of the possible choices of r. If an integer p is found to
satisfy (6) for C1 log(l/e) randomly chosen values of r, where C1 is a constant, then
we will declare it to be "prime". Note that the probability that such a number is
actually composite can be made less than e/4 if C1 is sufficiently large.

The algorithm for part (a) is to repeat the following sequence of steps up to a
maximum of C2 log(l/e)log2 n times for some constant C2.

1. Choose x randomly with 1 < x < n D, x m (mod n), x # 1 (mod 8), and x
odd.

2. Choose a random number r with 1 < r < x. If gcd(r, x) > 1, then go to step 4.
3. Use (6) with p = x to test x for primality. If (6) does not hold, then proceed to

step 4. If (6) holds, then go back and repeat steps 2 and 3 up to a maximum of
C1 log(l/e) times for a given x. If x passes all primality tests, then output
Pi = x and stop.

4. Choose L randomly with 1 < L < n. If gcd(L, n) > 1, then output d =

gcd(L, n) and stop.
5. Choose y, z randomly with 1 < y, z < n D, y _ L (mod n), z Lm (mod n),

y # 1 (mod 8), z # 1 (mod 8), y, z odd.
6. As in step 3, choose random numbers and use (6) to test both y and z for

primality. As soon as either y or z fail a primality test, return to step 1. If both
y and z pass C1 log(l/e) primality tests, then output P2 = y and p3 = z and
stop.

There are two ways that the algorithm can fail, namely if it declares a composite
number to be prime, and if it fails to come across the desired primes. We have
already chosen C1 so that the probability of the first event is less than e/2. In order
to prove that the algorithm will encounter the desired primes with probability at
least 1 - e/2, we consider two cases, depending on whether or not an exceptional
character X modulo n exists.

If n is not exceptional, then by Lemma 3, the probability that the x chosen in step
1 is prime is at least

{nD/(3cp(n)Dlogn)}/{3nD-l/4} > 4/(9Dlogn),

so that we have a probability of at least 1 - e/2 of finding a prime x if we examine
O(log(l/e)log n) random values of x.

24 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

If on the other hand n is exceptional, and X(m) = -1, then the preceding
argument works without any modification. If X(m) = 1, then at least one half of the
choices for L in step 3 will have either gcd(L, n) = 1 or x(L) = -1. If x(L) = -1,
then X(mL) = -1, and by Lemma 3, y and z will both be prime with probability at
least C/log2 n. Hence we have a probability at least 1 - e/2 of finding primes y
and z after examining C2 log(l/E)log2 n random values of y and z.

We now estimate the running time of the algorithm. Both sides of (6) can be
evaluated in O(log n) arithmetic operations on integers of size O(log n) bits, since
log p = O(log n). Hence an upper bound for the number of operations performed by
the algorithm is the maximum number of primality tests, times the maximum
number of integers tested, times the number of operations required for each test, or

Cl log(l/e) * C2log(1/e)log2n * logn = O(log2(1/e)log3n).

This analysis is rather crude, however, since it is extremely unlikely that all of the
numbers tested for primality will actually require C1 log(l/e) primality tests. Even if
the first C2 log(1/e)log2n numbers tested were in fact composite, the probability
that it would require more than 3 C2 log(l/e)log2 n primality tests to discover this
fact is less than e/2. Hence the probability that the algorithm produces a correct
output after O(log(l/e)log3n) operations is at least 1 - ?, saving a factor of
log(l/e) in the running time.

The algorithm for part (b) is similar. We need only show that the appropriate
arithmetic progressions contain a high density of primes. Let Al, A2, and A3 satisfy
A1 m (mod n), A2 L (mod n), A3 Lm (mod n), and Ai 1 (mod 8). If there
is no exceptional zero modulo 8n, then with probability 1 - ? we will succeed in
constructing Pi* If an exceptional character modulo 8n exists and X(Al) = -1, then
we will still succeed in constructing Pi* The only case remaining is if X(Al) = 1. In
this case we write X = XnX85 a pointwise product of characters modulo 8 and
modulo n. Since it is known that X8 is not exceptional (see [10]), it follows that Xn iS

nonprincipal. For at least 1/2 of the choices of L, we will have Xn(L) = 0 or
X n(L) = -1. In the first case we get a proper factor of n, and in the second case we
have

x(X2) = X8(1)Xn(mL) = -1, X(A3) = X8(1)Xn(L) = -1,

so that we will be able to succeed in constructing P2 and p3 with probability 1 - e.
El

The ideas behind the following lemmas are contained in [8] and [11], but we
restate them here for completeness.

LEMMA 5. Let gcd(kLm, n) = 1. If solutions to any two of the congruences

x- iy2 m (mod n), x2 - ky2 L (modn), x2 - ky2 Lm (modn)

are known, then a solution to the third can be found in O(log n) multiplications modulo
n.

Proof. This follows from the identity

(7) (x2 - ky2)(z2 - kw2) = u2 - kV2,

SOLVING BIVARIATE QUADRATIC CONGRUENCES 25

where u = xz + kyw, and v = xw + yz. Note that if x, y, u, and v are known, then
z and w can be recovered by solving a linear system of congruences with determi-
nant x2 - ky 2. The time required to carry this out is dominated by the time needed
to invert the determinant modulo n. L

LEMMA 6. If n is odd and gcd(mklk2, n) = 1, then given solutions to x2 - kjy2 m
(mod n) and x2 - k2y22 m (mod n), one can construct in O(log n) multiplications
modulo n either a solution to x2 - k1k2y2

= m (mod n), or else a proper divisor of n.

Proof. If Yi and Y2 are both invertible modulo n, then

(x y kj2-m(y l)%_k1(modn), (x2y j)2- m(yj)2- k2 (modn),

and by Lemma 5 we can produce integers u, v with u2 - mv2 kjk2 (mod n). If v
is invertible modulo n, then (uv-1)2 - klk2(v-1)2 = m (mod n). It remains only to
deal with the cases of noninvertible Y1, Y2, or v. If n yi, then X2 m (mod n),
giving a solution of the desired congruence. If nI v, then u2= kjk2 (mod n), and
x (m + 1)/2 (mod n), y (m - 1)/(2u) (mod n) provide a solution. In all other
cases, the Euclidean algorithm will produce a nontrivial factor of n. El

In the course of the algorithm, we may occasionally produce a proper factoriza-
tion of n, and in this case we may argue as in Section 2 that we can either produce a
relatively prime factorization n = njn2 or else a proper divisor n3 of n that is
divisible by all of the primes dividing n. If the divisor n 3 is produced in the course
of the algorithm, then we continue the algorithm with n replaced by n3, and later
use Hensel's lemma to construct a solution modulo a sufficiently large power of n 3

that is divisible by n. In the case of the relatively prime factorization, we can
continue the algorithm with n i in place of n, and later combine the results using the
Chinese Remainder Theorem. It was observed in [8] that two arithmetic operations
modulo two factors of n take essentially the same time as a single operation modulo
n.

Because we shall reduce the problem of solving (2) to the cases k = 1, we begin
by noting that the case X2 y2 = m (modn) is trivial, because we may take
x (m + 1)/2 (mod n), y (m - 1)/2 (mod n). In [8], the case k = -1 was
reduced to the case k = 1, but we will now give an independent argument for the
case k = -1 that is very similar to that given in [11]. First use the algorithm of
Lemma 4(b) to construct either the prime P1 or else the primes P2 and p3, where
pi1 (mod 8). Given the prime P1, we then use a probabilistic square-root algo-
rithm such as that described in [4, p. 4371 to compute a solution x0 to x2 _-1

(modpl). This can be done with probability 1 - e using O(log(l/e)log n) arithmetic
operations modulo P1, and since logp P= O(logn), operations modulo P1 are
essentially as fast as operations modulo n. We next use this in the algorithm of
Hermite, as modified in [2], to find integers x and y with X2 + y2 = Pi, from which
it follows that X2 + y2 m (mod n). The algorithm of [2] is equivalent to applying
the Euclidean algorithm to Pi and x0, so it requires at most O(log n) operations.
Given the primes P2 and p3, we use Hermite's algorithm to find integers x, y, z,
and w such that X2 + y2 = P2 and z2 + W2 = p3 and use these in Lemma 5 to find
a solution of U2 + V2 = m (mod n).

26 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

Next we modify an argument in [8] for the cases k = ? 2. As in the case k = -1,
we first use the algorithm of Lemma 4(b) to construct either the prime P1 or else
the primes P2 and p3, where pi 1 (mod 8). Let us first assume that we are given
Pl. Since (2/pl) = (-2/pl) = 1, we find an integer x0 with X2- k (mod p1). We
then define a sequence q1, xl, q2, x2, ... , qj1l by taking

ql= (Xo2- k)- p5

(8) x i --xi-1 (mod qi), 1xiI minimal,

qi+l=(x72-k)/qi i=1,2,....

If Jqij > 2, then Jqi+11 < Jqij/4 + 12/qij < 51qiJ/6, so that the Jqil's are decreasing,
and it follows that qj+ = + 1 for some j with j = 0(log n). We now have

(xo - k)(xl - k) ... (x] - k) = (pjqj)(qjq2) ... (qjqj+1)

which by the identity (7) can be rewritten as u2 - kv2 = +pJw2 for some integers u,
v, and w, using at most 0(log n) operations. If gcd(w, n) > 1, then we have
gcd(qi,n) > 1 for some i. If nIqi, then (Xi1)2 k (modn), and a solution to
x- ky2 m (mod n) is easy to construct. In the other cases with gcd(w, n) > 1,
gcd(qi, n) is a proper factor of n, and we can restart the algorithm as described
previously. If gcd(w,n) = 1 then we have (uw-1)2 - k(vw-1)2 ? +m (mod n).
Note that by Lemma 5 we can produce a solution to (2) from a solution to
x-ky2 -m (mod n), provided we can also produce a solution of x2 - ky2 -1
(mod n). Recall that in the previous case k = -1, we showed how to solve u2 + v2

k (mod n), and from this we get either a solution of x2 - ky2 -1 (mod n) or a
proper factor of n.

If the algorithm of Lemma 4(b) produces the primes P2 and p3, then we use the
procedure described above to solve the congruences x2 - ky2 L (mod n) and
x - ky Lm (mod n), later using Lemma 5 to construct a solution of (2).

We now describe the general reduction step if Iki > 2. Our goal is to reduce the
problem of solving (2) to the problem of solving x2 - ky2 =j (mod n), where
1kl = 0(k 11/2). In fact, our reduction step is more complicated, since we may
reduce to several problems with different kj's. The reduction begins by using the
algorithm of Lemma 4(a) to produce either the prime P1 or else the primes P2 and
p3, all satisfying pi # 1 (mod 8). We consider first the case where P1 is given. Since
p1 # 1 (mod 8), it follows that at least one of the Legendre symbols (k/p1), (2k/p1),
or (-k/pl) is equal to 1. We consider these cases separately.

If (k/pj) = 1, then the reduction step is much the same as described in [8]. We
define a sequence q1, xj, q2, x2,... ,qj+l as in (8), and again the q1's satisfy

1qi+11 < qJI/4 + Jk/qij. If 1qi1 > (131k1/9)1/2, then it follows that 1qi+11 < 491qil/52,
so that jq+?11 < (131kl/9)1/2 for j = 0(logIk). We take k1 = qj+1, and note that

(xO - k)(xl - k) ... (Xj - k) = (pjqj)(qjq2) ... (qjqj+l)

which, as before, is equivalent to u2 - kv2 = plklw2 for some integers u, v, and w.
The case gcd(w, n) > 1 will again produce either a square root of k modulo n or else
a proper factor of n. If gcd(w, n)= 1, then (uw-1)2 - k(vw-)2 -ik1 (modn),

SOLVING BIVARIATE QUADRATIC CONGRUENCES 27

and by Lemma 5, in order to solve (2), it now suffices to solve x2- y2 k
(mod n), which then reduces to solving x2 - ky2 k (mod n).

Next consider the case that (-k/pl) = 1. By Lemma 6, in order to solve (2), it
suffices to solve both x2 ? y2 m (mod n) and x2 ? ky2 m (mod n). The former
was discussed previously, and the latter can be reduced to solving x2 - ky2 k
(mod n) with IklI < (131k 1/9)1/2 as in the previous paragraph.

If finally we have (2k/pl) = 1, then by Lemma 6, in order to solve (2), it suffices
to solve X2 - 2 m (modn) and x2 - 2ky2 m (modn). The former has
already been dealt with, and the latter can be reduced to solving x2 - kly2 2k
(mod n), where now Jkll < (261k1/9)1/2.

If the algorithm of Lemma 4(a) produces L, P2, and p, instead of P1, then we
simply apply the reduction step to the two congruences x2 - /y2 L (mod n) and
x- ky2 Lm (mod n) simultaneously in the same way that was described for the
case of Pl*

4. The Running Time Analysis. The algorithm that we have described consists of a
sequence of reduction steps, each of which will reduce a congruence x2 - /y2 _m
(mod n) to the problem of solving one or two congruences of the form x2 - kly2 k
(mod n), where /kli < (261k1/9)1/2. After the ith reduction step, there are at most 2'
congruences of the form x2 - /y2 = m (mod n) to be solved, and each of these has

1ki < (26/9)1 2 1 12,

so that lkil < 2 as soon as 21 > (loglki)/log(27/26). Hence we are required to solve
at most 0(logIck) problems.

We now estimate the probability of success in the algorithm. If there is a
probability 8 of failure in a reduction step on any individual problem, then since
there are 0(log/kl) problems to be solved, we have a probability of failure for the
entire algorithm of 0(8 logIckI). In order to make this probability less than e, we take
8 = e/logjk , so that a reduction step on any one problem requires at most
0(log(-1 log Ik/)log3 n) arithmetic operations modulo n. The work done in each
reduction step is dominated by the time for the algorithm of Lemma 4, since the
square roots can be calculated with probability 1 - E in 0(log(1/E)log n) operations.
Since there are 0(logik/) individual reductions to be performed, the number of
operations in the entire algorithm is 0(log(e6lloglk)log3 n log I/k) in order to pro-
duce a correct output with probability at least 1 - e.

Note also that the storage requirements of the algorithm are modest, requiring no
more than 0(log I/k) storage locations containing integers of 0(log n) bits.
Department of Computer Science
University of Southern California
Los Angeles, California 90089-0782

Department of Mathematics
University of Southern California
Los Angeles, California 90089-1113

Department of Mathematics
University of Southern California
Los Angeles, California 90089-1113

28 LEONARD M. ADLEMAN, DENNIS R. ESTES, AND KEVIN S. McCURLEY

1. E. BOMBIERI, "Le grand crible dans la theorie analytique des nombres" (Avec une sommaire en
anglais), Asterisque, No. 18, Societ6 Mathematique de France, Paris, 1974.

2. J. BRILLHART, "Note on representing a prime as a sum of two squares," Math. Comp., v. 29, 1972,
pp. 1011-1013.

3. H. DAVENPORT, Multiplicative Number Theory, 2nd ed., revised by Hugh L. Montgomery,
Springer-Verlag, Berlin and New York, 1980.

4. D. E. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed.,
Addison-Wesley, Reading, Mass., 1981.

5. K. MCCURLEY, "Explicit zero-free regions for Dirichlet L-functions," J. Number Theory, v. 19,
1984, pp. 7-32.

6. H. L. MONTGOMERY & R. VAUGHN, "The large sieve," Mathematika, v. 20, 1973, pp. 119-134.
7. C. POMERANCE, "Analysis and comparison of some integer factoring methods," in Computational

Methods in Number Theory: Part 1 (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math. Centre Tract 154,
Math. Centre, Amsterdam, 1982, pp. 89-139.

8. J. M. POLLARD & C. P. SCHNORR, "Solution of x2 + ky2 m (mod n), with application to digital
signatures," preprint, 1985.

9. M. RABIN, Digitalized Signatures and Public-Key Functions as Intractible as Factorization, MIT
Laboratory for Computer Science Report TR-212, 1979.

10. J. B. ROSSER, "Real roots of Dirichlet L-series," Bull. Amer. Math. Soc., v. 55, 1949, pp. 906-913.
11. J. 0. SHALLIT, An Exposition of Pollard's Algorithm for Quadratic Congruences, Technical Report

84-006, Dept. of Computer Science, University of Chicago, 1984.
12. D. SHANKS, Five Number-Theoretic Algorithms, Proc. Second Manitoba Conference on Numerical

Mathematics, 1972, pp. 51-70.
13. R. SOLOVAY & V. STRASSEN, "A fast Monte-Carlo test for primality," SIAM J. Comput., v. 6, 1977,

pp. 84-85.

	Cit r25_c25:

